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GUI (Graphical User Interfaces
• Everyone expects programs to use GUI

• What is available for C# programs?
• If the program is to be run on a Window

program can use the Form class in the
System.Windows.Forms namespace p
the various controls.
(The WinForms solution.)

• If the program is to be run on Rotor, th
approach seems to be calls to Tcl usin
by the SharedSourceCLI.TK namespa
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 checkbox control 
The WinForms Solution

Coding a Windows form by hand is hard

• Too many control classes, properties a
remember easily,

• Visual layout requires much trial and e

Sample code for a form with just a single
appears on the next slide ...
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.Text="Click Me";
dler(cbClicked);

rm";

tArgs e) {
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;

public class MyForm : Form {
private CheckBox cb;

private void InitializeComponent() {
cb = new CheckBox();
SuspendLayout();
cb.Location = new Point(24, 168);
cb.Name="checkBox1";  cb.TabIndex=1;  cb
cb.CheckedChanged += new System.EventHan
Controls.AddRange(new Control[] { cb });
this.Name = "MyForm";  this.Text = "MyFo
ResumeLayout(false);

}
private void cbClicked(object sender, Even
// check box code

}
}
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ated using the 
ent) in Visual 
Creating the WinForms Code
• Usually, the code is automatically gener

MDE (Microsoft Development Environm
Studio.

• Not available for Rotor.

• Need to code calls to Tcl by hand.

• Sample code appears on next slide.
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mmand {myButton};");

);

) );
// Sample Tcl/TK Usage

void InitProc( TclInterp interp ) {
// Initialize Tcl
interp.TclInit();
// Initialize the TK libs
interp.TkInit();

interp.Eval("canvas .c");
interp.Eval(
"button .c.myButton -text \"Click Me\" -co

interp.CreateCommand("myButton",
new TclCmdProc(this.ButtonClickFunction)

interp.Eval("pack .c");
}

// Create the interpreter
TclInterp m_interp = new TclInterp();

// and start the Tcl application
m_interp.TkMain( new TclAppInitProc(InitProc
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indowing System
Desiderata
• Neither the WinForms code nor the Tcl i

should be programmed afresh for each 

• Consistency across the different platform

• Easy development of simple GUIs witho
would be nice.

... and that is where Views comes in.

VIEWS = Vendor Independent Event and W
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very complicated 
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Shall we use a tool to build th

The programmer has to learn ..

• how to use a development environment

• how to use the form designer in that env

• how to edit the generated code,

• and still has to learn about many classe
and ...

The development environment itself looks 
and intimidating to all but expert programm
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A Snapshot of the MDE 
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A new approach – Views

• A Views.VForm class instance is a Wind
and a close simulation of a Windows for
(currently) implemented with Tcl/TK.

• A specification string, used by the class 
defines
• which form controls are wanted, and
• their layout.

• The specification string is written in XML
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 errors in the XML
Example: a Views.VForm insta
string xmlspec = @"<form>

<horizontal>
<vertical>

<listbox name=output/>
<button name=exit/>

</vertical>
<vertical>
<button name=push width=72/>
<filedialog name='Select File' width=
<textbox name=info width=200/>

</vertical>
</horizontal> </form>";

Views.VForm gui;

try {
gui = new Views.VForm(xmlspec);

} catch( Exception e ) {
// an optional try-catch block: it catches
Console.WriteLine(e.Message);
return;

}
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... and the result looks like thi
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 System.Xml 

ys ...
 names is 

used around 
 the values do not 

ressions name-
before it is parsed)

just vertical lists 

s control.
Notes on the XML:
• The implementation uses classes in the

namespace to parse the XML.

• The XML notation is relaxed in three wa
• capitalization of tagnames and attribute

ignored,
• either single or double quotes may be 

attribute values; they may be omitted if
contain special characters, and

• redundant spaces are eliminated.
(Classes in the System.Text.RegularExp
space are used to standardize the XML 

• The layout is deliberately kept simple – 
and horizontal lists (more later).

• There is one tag for each supported form
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rm instance?
rm is easily usable 

sed.

ract with the form 
How do we use the Views.VFo
Interaction is kept very simple so that the fo
by a programmer ...

• no editing of generated code,

• preferably no call-back routines, and

• the minimum number of methods to be u

Our basic approach is to have the user inte
via a simple wait loop ...
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 button press

to exit

= " + f);
Sample interaction code:
// the standard idiom to be imitated by nai
while(gui != null) {

string b = gui.GetButton();  // wait for a

switch(b) {  // switch on name of button
case "push":
string s = gui.GetText("info");
gui.PutText("output", "Text = " + s);
break;

case "exit":
gui.CloseGUI();
gui = null; // causes the outer loop 
break;

case "Select File":
string f = gui.GetText(b);
gui.PutText("output", "File selected 
break;

}
}
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 features:
Some more VForm controls &
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The supported XML construct
the Rotor implementation

<form> ... </form>

<vertical> ... </vertical> vertical list o

<horizontal> ... </vertical> horizontal li

<button name=xxx/>

<textbox name=xxx/>

<listbox name=xxx/>

<label name=xxx/>
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handle

in vertical list

in horizontal list
Supported Attributes (so far)

Name = xxxx used as a 

Text = xxxx

Width = wwww

ForeColor = cccc

BackColor = cccc

HAlign = {left,right,center} alignment 

VAlign = {top,bottom,middle} alignment 
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) ... 

constructor

Name )

Name )
Views.VForm methods (so far

Views.VForm( string xmlspec )

void CloseGui( )

string GetButton( )

string GetText( string name )

int GetValue( string name )

void PutText( string name, string cval )

void PutValue( string name, int v )

void SetBackColor( string name, Color col )

void SetBackColor( string name, string color

void SetForeColor( string name, Color col )

void SetForeColor( string name, string color
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Planned or possible additions

• Implementation of more controls.

• Access to more attributes of the controls

• Explicit placement of controls at X,Y coo
canvas (see next slide).

• Optional event handling functions as ca
(see next but one slide).
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</pos>
os>
h=72/> </pos>

=72/> </pos>
h=200/> </pos>
A Form Designer?
• An equivalent of the MDE forms designe

generate the XML specification as its re
That is why the XML notation needs to i
coordinate specifications, e.g.

string xmlspec =
@"<form>

<canvas>
<pos x=10 y=10> <listbox name=output/> 
<pos x=10 y=30> <button name=exit/> </p
<pos x=100 y=10> <button name=push widt
<pos x=100 y=30>

<filedialog name='Select File' width
<pos x=10 y=50> <textbox name=info widt

</canvas>
</form>";
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shMePressed);
putChar);

 {
colour
Call-back routines ?
Consider this possible interface ...

string xmlspec = @"<form> <vertical>
<button name='Push Me'/>
<textbox name='Input'/>

</vertical> </form>";
Views.VForm xg = new Views.VForm(xmlspec);
xg.RegisterCallBack("Push Me", "pressed", Pu
xg.RegisterCallBack("Input", "keystroke", In

xg.Run(); // execute until window is closed
return;

...
void PushMePressed( string name, Control c )

c.ForeColor = Color.Red; // change button 
... // do other things

}

void InputChar( string name, Control c ) {
... // do various things

}
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 button

n class (it is not 
n of the class 
And other possibilities ...

A control may have a rich variety of fields a
would be nice to provide access to a sophi

Views.Button c = xg.GetControl("Push Me");
c.ForeColor = Color.Blue;
c.BackColor = Color.Red;
c.Width = 100;
c.Text = "Don’t Push Me"; // change label on

Note: this is not the Windows.Forms.Butto
available with Rotor) but a simplified versio
implemented in Views.
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This work is at an ea
stage.

Your comments and
suggestions are wel
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