Views — An
Independent GUI
Development Tool
for Rotor

R. Nigel Horspool, University of Victoria, CA
Judith Bishop, University of Pretoria, ZA

GUI (Graphical User Interfaces):

* Everyone expects programs to use GUIs.

* What is available for C# programs?

» If the program is to be run on a Windows system, the
program can use the Form class in the
System.Windows.Forms namespace plus the classes for
the various controls.

(The WinForms solution.)

» If the program is to be run on Rotor, the portable
approach seems to be calls to Tcl using the API provided
by the SharedSourceCLI. TK namespace on Rotor.

2 of 24

The WinForms Solution

Coding a Windows form by hand is hard —

* Too many control classes, properties and methods to
remember easily,

* Visual layout requires much trial and error.

Sample code for a form with just a single checkbox control
appears on the next slide ...

3 of 24

usi ng System

usi ng System Draw ng;

usi ng System Col | ecti ons;
usi ng System Conponent Model ;
usi ng System W ndows. For 1rs;

public class MyfForm : Form {
private CheckBox cb;

private void InitializeConponent () {
cb = new CheckBox();
SuspendLayout () ;
cb. Locati on = new Point (24, 168);
cb. Nane="checkBox1"; cb. Tabl ndex=1; cb. Text="Cick M";
cb. CheckedChanged += new System Event Handl er (cbd i cked);
Control s. AddRange(new Control[] { cb });
this.Name = "MWFornl'; this. Text = "MForn;
ResunelLayout (f al se);

}

private void cbCicked(object sender, EventArgs e) {
/| check box code

}
}

4 of 24

Creating the WinForms Code

e Usually, the code is automatically generated using the

MDE (Microsoft Development Environment) in Visual
Studio.

* Not available for Rotor.
* Need to code calls to Tcl by hand.

e Sample code appears on next slide.

5 of 24

/] Sanple Tcl/TK Usage

void InitProc(Tclinterp interp) {
/1l Initialize Tcl

interp. Tcllnit();

/[l Initialize the TK |ibs

interp. Tkinit();

i nterp. Eval ("canvas .c");
| nterp. Eval (
"button .c.nyButton -text \"Cick Me\" -command {nyButton};");
I nterp. Creat eCommand(" nyButton",
new Tcl CnmdProc(this.Buttond ickFunction));

i nterp. Eval ("pack .c");
}

/Il Create the interpreter
TclInterp minterp = new TcllInterp();

/'l and start the Tcl application
m i nterp. TkMai n(new Tcl ApplnitProc(lnitProc));

6 of 24

Desiderata

® Neither the WinForms code nor the Tcl invocation code
should be programmed afresh for each application.

* Consistency across the different platforms would be nice.

* Easy development of simple GUIs without a visual tool
would be nice.

.. and that is where Views comes in.

VIEWS = Vendor Independent Event and Windowing System

7 of 24

Shall we use a tool to build the GUI?

The programmer has to learn ..

how to use a development environment,
how to use the form designer in that environment,
how to edit the generated code,

and still has to learn about many classes, and exceptions
and ...

The development environment itself looks very complicated
and intimidating to all but expert programmers ...

8 of 24

A Snapshot of the MDE

File Edit Miew Project Build Debug Data Format Tools Window

B-a-sEl@)RR oo -85) e

Help

- [SetPositions

BlE e o m o0 | SREEEwk® |80 WEG%.

Toolbox 3 x | TrackBar Class Forml.cs [Design]* | Farml,cs* | 4 bk x |Index x
Data | Loak far: |
Components I TrackBar class, about TrackBar class LI
‘Windows Forms Al
| k Poirker . Thig iz a Label IVisuaI C# and Related LI
A Label e
: . TrackBar class A
A Linklabel o conino [lstBe about TrackBar class o
ab| Button i all members
Eruck
[abl TextBosx gigsntr:c o
= MainMenu methods
roperties
¥ CheckBox o Eampples
& RadicButtan i : : TrgcthSr cto_ntrol E
; introduction
[*'] GroupBox I™ checkBaxl lack of Unicode support =
Plebtirete TrackBar control sample
TrackBar . AutoSize property
{71 Panel TrackBar Rackaroundlmans oronert
5 Datacrid |Pr0perties x
EH ListBax IForml Syskem.Windows.Forms. Form j
ER checkeduistBox A =z
8 Combab 5| 8 Z |
omboBox
e Cursar Default <
2o ListWiew - 2
22 = Font Microsoft Sans Serif, 8.25|:|_I
el I ForeCalar Bl cCortrolTest
Output q x || FormBorderstyls Sizable
RightToLeft Mo
Build
i LI Text Forml
Bl Behavior
AllowDrop False hd
Text
The kext contained in the contral,
| 3
Properties 9 [rynamic Help |
/

Ready

i
[=

9 of 24

A new approach — Views

A Views.VForm class instance is a Windows form on XP

and a close simulation of a Windows form on Rotor, but
(currently) implemented with Tcl/TK.

A specification string, used by the class constructor,
defines

e which form controls are wanted, and
» their layout.

The specification string is written in XML notation.

10 of 24

Example: a Views.VForm instance

string xm spec = @ <fornp
<hori zont al >
<vertical >
<|listbox name=out put/>
<butt on nane=exit/>
</vertical >
<vertical >
<button nanme=push w dt h=72/>
<fil edial og nane="' Sel ect File' w dth=72/>
<t ext box nane=i nfo w dt h=200/ >
</vertical >
</ horizontal > </fornp";
Vi ews. VFor m gui ;

try {
gui = new Vi ews. VFor m(xm spec);

} catch(Exception e) {
/1l an optional try-catch block: it catches errors in the XM
Consol e. Wi telLine(e. Message) ;
return;

11 of 24

... and the result looks like this ...

ScreenT aker v3.11 - UNREGISTERELD =
= XG Form . ' M=1E3

Tt = semey puzh

Tt = pyyyyy
File zelected = E:\MigehText F

Select File

R A

12 of 24

Notes on the XML.:

The implementation uses classes in the System.Xml
namespace to parse the XML.

The XML notation is relaxed in three ways ...

e capitalization of tagnames and attribute names is
ignored,

» either single or double quotes may be used around
attribute values; they may be omitted if the values do not
contain special characters, and

* redundant spaces are eliminated.

(Classes in the System.Text.RegularExpressions name-
space are used to standardize the XML before it is parsed)

The layout is deliberately kept simple — just vertical lists
and horizontal lists (more later).

There is one tag for each supported forms control.

13 of 24

How do we use the Views.VForm instance?

Interaction is kept very simple so that the form is easily usable
by a programmer ...

* no editing of generated code,
* preferably no call-back routines, and

* the minimum number of methods to be used.

Our basic approach is to have the user interact with the form
via a simple wait loop ...

14 of 24

Sample interaction code:

/'l the standard idiomto be imtated by naive programers
while(gui !'= null) {

string b = gui.GetButton(); // wait for a button press

swtch(b) { // switch on nanme of button

case "push":
string s = gui.GetText("info");
gui . Put Text ("out put™, "Text =" + 8);
br eak;

case "exit":
gui . G oseG ();
gui = null; // causes the outer loop to exit
br eak;

case "Select File":
string f = gui.GetText(b);
gui . Put Text ("output”, "File selected =" + f);
br eak;

15 of 24

Some more VForm controls & features:

ScreenT aker v3.11 - UNREGISTERELD =
= XG Form S ' M=1E3

Text = wummuEEg puszh
Text = 333333333333333334:

Select File

|EIEIEIEIEIEIEIEIEEIEIEIEIEIEIEIEIEEEEIEIEIEIEIEIEE

||| option 1

Wen12

16 of 24

The supported XML constructs (so far) in
the Rotor implementation

<fornmp ... </fornp
<vertical> ... </vertical > vertical list of controls / lists
<horizontal> ... </vertical > horizontal list

<butt on nane=xxx/>
<t ext box name=xxx/>
<| 1 stbox nane=xxx/>

<| abel name=xxx/>

17 of 24

Supported Attributes (so far)

Nanme = XXXX used as a handle
Text = XXXX

Wdth = wwww

ForeCol or = cccc

BackCol or = cccc

HAlign = {left,right,center} alignment in vertical list

VAl ign = {top, bottom m ddl e} alignment in horizontal list

18 of 24

Views.VForm methods (so far) ...

Vi ews. VForm(string xml spec) constructor
void C oseCGui ()

string GetButton()

string GetText(string nane)

I nt GetValue(string nane)

voi d Put Text(string nanme, string cval)

voi d PutValue(string nanme, int v)

voi d Set BackCol or(string nanme, Color col)

voi d Set BackCol or(string name, string col orNane)

voi d Set ForeCol or(string nanme, Color col)

voi d Set ForeCol or(string name, string col orNane)

19 of 24

Planned or possible additions

* Implementation of more controls.
* Access to more attributes of the controls.

* Explicit placement of controls at X,Y coordinates on a
canvas (see next slide).

* Optional event handling functions as callback routines
(see next but one slide).

20 of 24

A Form Designer?

An equivalent of the MDE forms designer tool could
generate the XML specification as its result.

That is why the XML notation needs to include X,Y
coordinate specifications, e.qg.

string xm spec =
@ <f or np

<canvas>
<pos x=10 y=10> <l i stbox nane=out put/> </ pos>
<pos x=10 y=30> <button nane=exit/> </ pos>
<pos x=100 y=10> <button nane=push w dt h=72/> </ pos>
<pos x=100 y=30>

<fil edial og nane='Select File' w dth=72/> </pos>

<pos x=10 y=50> <textbox nane=info w dt h=200/> </ pos>

</ canvas>

</fornmp";

21 of 24

Call-back routines ?
Consider this possible interface ...

string xmspec = @<forne <vertical >
<butt on nane=' Push Me'/>
<t ext box nane='lnput'/>
</vertical > </fornp";
Vi ews. VForm xg = new Vi ews. VFor n(xml spec) ;
Xg. Regi ster Cal | Back(" Push Me", "pressed", PushMePressed);

Xg. Regi ster Cal | Back(" | nput", "keystroke", |nputChar);
Xg. Run() ; /| execute until windowis closed
return;

voi d PushMePressed(string name, Control c) {
c. ForeCol or = Col or.Red; // change button col our
/1 do other things

}

void I nputChar(string nane, Control c) {
/1 do various things
}

22 of 24

And other possibilities ...

A control may have a rich variety of fields and methods. It
would be nice to provide access to a sophisticated user:

Views.Button ¢ = xg. GetControl ("Push M");
c. For eCol or Col or. Bl ue;

c. BackCol or Col or . Red;

c.Wdth = 100;

c. Text = "Don’t Push Me"; [/ change | abel on button

Note: this is notf the Windows.Forms.Button class (it is not
available with Rotor) but a simplified version of the class
implemented in Views.

23 of 24

This work is at an early
stage.

Your comments and
suggestions are welcome.

24 of 24

H# SImply.

ISNOP and FHorspool
e 3

AUUS

