
1 of 24

n
 GUI
 Tool

f Victoria, CA
retoria, ZA
Views – A
Independent

Development
for Rotor

R. Nigel Horspool, University o
Judith Bishop, University of P

2 of 24

):
s.

s system, the

lus the classes for

e portable
g the API provided
ce on Rotor.
GUI (Graphical User Interfaces
• Everyone expects programs to use GUI

• What is available for C# programs?
• If the program is to be run on a Window

program can use the Form class in the
System.Windows.Forms namespace p
the various controls.
(The WinForms solution.)

• If the program is to be run on Rotor, th
approach seems to be calls to Tcl usin
by the SharedSourceCLI.TK namespa

3 of 24

 –

nd methods to

rror.

 checkbox control
The WinForms Solution

Coding a Windows form by hand is hard

• Too many control classes, properties a
remember easily,

• Visual layout requires much trial and e

Sample code for a form with just a single
appears on the next slide ...

4 of 24

.Text="Click Me";
dler(cbClicked);

rm";

tArgs e) {
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;

public class MyForm : Form {
private CheckBox cb;

private void InitializeComponent() {
cb = new CheckBox();
SuspendLayout();
cb.Location = new Point(24, 168);
cb.Name="checkBox1"; cb.TabIndex=1; cb
cb.CheckedChanged += new System.EventHan
Controls.AddRange(new Control[] { cb });
this.Name = "MyForm"; this.Text = "MyFo
ResumeLayout(false);

}
private void cbClicked(object sender, Even
// check box code

}
}

5 of 24

ated using the
ent) in Visual
Creating the WinForms Code
• Usually, the code is automatically gener

MDE (Microsoft Development Environm
Studio.

• Not available for Rotor.

• Need to code calls to Tcl by hand.

• Sample code appears on next slide.

6 of 24

mmand {myButton};");

);

));
// Sample Tcl/TK Usage

void InitProc(TclInterp interp) {
// Initialize Tcl
interp.TclInit();
// Initialize the TK libs
interp.TkInit();

interp.Eval("canvas .c");
interp.Eval(
"button .c.myButton -text \"Click Me\" -co

interp.CreateCommand("myButton",
new TclCmdProc(this.ButtonClickFunction)

interp.Eval("pack .c");
}

// Create the interpreter
TclInterp m_interp = new TclInterp();

// and start the Tcl application
m_interp.TkMain(new TclAppInitProc(InitProc

7 of 24

nvocation code
application.

s would be nice.

ut a visual tool

indowing System
Desiderata
• Neither the WinForms code nor the Tcl i

should be programmed afresh for each

• Consistency across the different platform

• Easy development of simple GUIs witho
would be nice.

... and that is where Views comes in.

VIEWS = Vendor Independent Event and W

8 of 24

e GUI?

,

ironment,

s, and exceptions

very complicated
ers ...
Shall we use a tool to build th

The programmer has to learn ..

• how to use a development environment

• how to use the form designer in that env

• how to edit the generated code,

• and still has to learn about many classe
and ...

The development environment itself looks
and intimidating to all but expert programm

9 of 24
A Snapshot of the MDE

10 of 24

ows form on XP
m on Rotor, but

constructor,

 notation.
A new approach – Views

• A Views.VForm class instance is a Wind
and a close simulation of a Windows for
(currently) implemented with Tcl/TK.

• A specification string, used by the class
defines
• which form controls are wanted, and
• their layout.

• The specification string is written in XML

11 of 24

nce

72/>

 errors in the XML
Example: a Views.VForm insta
string xmlspec = @"<form>

<horizontal>
<vertical>

<listbox name=output/>
<button name=exit/>

</vertical>
<vertical>
<button name=push width=72/>
<filedialog name='Select File' width=
<textbox name=info width=200/>

</vertical>
</horizontal> </form>";

Views.VForm gui;

try {
gui = new Views.VForm(xmlspec);

} catch(Exception e) {
// an optional try-catch block: it catches
Console.WriteLine(e.Message);
return;

}

12 of 24

s ...
... and the result looks like thi

13 of 24

 System.Xml

ys ...
 names is

used around
 the values do not

ressions name-
before it is parsed)

just vertical lists

s control.
Notes on the XML:
• The implementation uses classes in the

namespace to parse the XML.

• The XML notation is relaxed in three wa
• capitalization of tagnames and attribute

ignored,
• either single or double quotes may be

attribute values; they may be omitted if
contain special characters, and

• redundant spaces are eliminated.
(Classes in the System.Text.RegularExp
space are used to standardize the XML

• The layout is deliberately kept simple –
and horizontal lists (more later).

• There is one tag for each supported form

14 of 24

rm instance?
rm is easily usable

sed.

ract with the form
How do we use the Views.VFo
Interaction is kept very simple so that the fo
by a programmer ...

• no editing of generated code,

• preferably no call-back routines, and

• the minimum number of methods to be u

Our basic approach is to have the user inte
via a simple wait loop ...

15 of 24

ve programmers

 button press

to exit

= " + f);
Sample interaction code:
// the standard idiom to be imitated by nai
while(gui != null) {

string b = gui.GetButton(); // wait for a

switch(b) { // switch on name of button
case "push":
string s = gui.GetText("info");
gui.PutText("output", "Text = " + s);
break;

case "exit":
gui.CloseGUI();
gui = null; // causes the outer loop
break;

case "Select File":
string f = gui.GetText(b);
gui.PutText("output", "File selected
break;

}
}

16 of 24

 features:
Some more VForm controls &

17 of 24

s (so far) in

f controls / lists

st
The supported XML construct
the Rotor implementation

<form> ... </form>

<vertical> ... </vertical> vertical list o

<horizontal> ... </vertical> horizontal li

<button name=xxx/>

<textbox name=xxx/>

<listbox name=xxx/>

<label name=xxx/>

18 of 24

handle

in vertical list

in horizontal list
Supported Attributes (so far)

Name = xxxx used as a

Text = xxxx

Width = wwww

ForeColor = cccc

BackColor = cccc

HAlign = {left,right,center} alignment

VAlign = {top,bottom,middle} alignment

19 of 24

) ...

constructor

Name)

Name)
Views.VForm methods (so far

Views.VForm(string xmlspec)

void CloseGui()

string GetButton()

string GetText(string name)

int GetValue(string name)

void PutText(string name, string cval)

void PutValue(string name, int v)

void SetBackColor(string name, Color col)

void SetBackColor(string name, string color

void SetForeColor(string name, Color col)

void SetForeColor(string name, string color

20 of 24

.

rdinates on a

llback routines
Planned or possible additions

• Implementation of more controls.

• Access to more attributes of the controls

• Explicit placement of controls at X,Y coo
canvas (see next slide).

• Optional event handling functions as ca
(see next but one slide).

21 of 24

r tool could
sult.
nclude X,Y

</pos>
os>
h=72/> </pos>

=72/> </pos>
h=200/> </pos>
A Form Designer?
• An equivalent of the MDE forms designe

generate the XML specification as its re
That is why the XML notation needs to i
coordinate specifications, e.g.

string xmlspec =
@"<form>

<canvas>
<pos x=10 y=10> <listbox name=output/>
<pos x=10 y=30> <button name=exit/> </p
<pos x=100 y=10> <button name=push widt
<pos x=100 y=30>

<filedialog name='Select File' width
<pos x=10 y=50> <textbox name=info widt

</canvas>
</form>";

22 of 24

shMePressed);
putChar);

 {
colour
Call-back routines ?
Consider this possible interface ...

string xmlspec = @"<form> <vertical>
<button name='Push Me'/>
<textbox name='Input'/>

</vertical> </form>";
Views.VForm xg = new Views.VForm(xmlspec);
xg.RegisterCallBack("Push Me", "pressed", Pu
xg.RegisterCallBack("Input", "keystroke", In

xg.Run(); // execute until window is closed
return;

...
void PushMePressed(string name, Control c)

c.ForeColor = Color.Red; // change button
... // do other things

}

void InputChar(string name, Control c) {
... // do various things

}

23 of 24

nd methods. It
sticated user:

 button

n class (it is not
n of the class
And other possibilities ...

A control may have a rich variety of fields a
would be nice to provide access to a sophi

Views.Button c = xg.GetControl("Push Me");
c.ForeColor = Color.Blue;
c.BackColor = Color.Red;
c.Width = 100;
c.Text = "Don’t Push Me"; // change label on

Note: this is not the Windows.Forms.Butto
available with Rotor) but a simplified versio
implemented in Views.

24 of 24

rly

come.
This work is at an ea
stage.

Your comments and
suggestions are wel

C# SimplyC# Simply
Bishop and Bishop and HorspoolHorspool

20032003

