
1

Experience with integrating Java with new
technologies: C#, XML and web services

Judith Bishop1, R Nigel Horspool2 Basil Worrall1
1Computer Science Department, of Pretoria 0002, South Africa jbishop,bworrall@cs.up.ac.za

2Computer Science Department, University of Victoria, Victoria BC, Canada V8W 3P6, nigelh@uvic.ca

ABSTRACT
Java programmers cannot but be aware of the new
initiative from Microsoft of a complete language, C#,
network environment, .NET, and host of supporting
technologies such as web services. Before moving all
development to a Microsoft environment,
programmers will want to know what are the
additional advantages of C# as a language over Java,
and whether the new and interesting features of C# and
.NET be incorporated into existing Java software. This
paper surveys the advantages of C# and then presents
experience with connecting it to Java in a variety of
ways. The first is by providing a common XML-based
class for the development of programmer controlled
GUIs, which can run independently of the expensive
(resource-intensive) Visual Studio development
environment that would otherwise be needed for using
C#. The second provides evidence that C# can be
linked to Java at the source code level, albeit through
C++ wrappers. The third is a means for retaining the
useful applet feature of Java in a server-side
architecture of .NET’s web services.

The paper concludes that there are many common
shared technologies that bring Java and C# close
together, and that innovative ways of using others can
open up opportunities not hitherto imagined.

Keywords:

Java, C#, XML, JNI, UIML, SOAP, web services.

1. INTRODUCTION
Java has been with us for seven years now and has
made phenomenal inroads into the world of system,
business, internet and educational programming. As
witnessed by conferences such as JavaGrande, its
influence extends also into scientific and high
performance computing, specifically in parallel and
distributed applications [5]. The reason for Java being
used by these latter communities is that it has
something to offer over and above the languages
currently in use – chiefly Fortran, Visual Basic and
C/C++.

Specifically, object-oriented programming, increased
security both within a program and between programs,
parallelism facilities, applets and access to new
resources through class libraries are cited as features
which could be profitably used by scientific
programmers [12].

The move towards Java in distributed computing has
not been without its problems [10] [9], however, and it
is to be expected that programmers will be loathe to
embark upon another change of language so soon. Yet,
the advent of Microsoft’s new language C# cannot go
unnoticed, and the questions to be asked are:

♦ What are the additional advantages of C# as a
language over Java?

♦ Can the new and interesting features of C# be
incorporated into existing Java software?

♦ What is the performance profile of C#?

Like Java, C# is not just a programming language, but
co-exists with a particular runtime enironment (like
Java’s JVM), a means of communicating on the
network (like Java’s RMI but unlike Java’s applets)
and several independent technologies which are used
by both languages (such as XML).

The purpose of this paper is to present experience with
C# co-existing with Java in numerous ways, and to
indicate which avenues of approach are likely to be
fruitful in the near and medium future. The paper
serves as a survey of possibilities, some of which are
written up in more depth in other work [6], [14].

2

Whereas Lobosco et al [9] survey some fourteen
specialised projects for adapting Java for high-
performance computing, we concentrate on exploiting
freely available (if not always free) application
independent technologies in this area.

The paper is organised as follows: Section 2 gives a
brief overview of C# from the Java programmer’s
viewpoint. Section 3 takes three of the main
technologies for C# to Java interoperatbility, namely
XML, JNI and .Web services and shows how they can
be used to enhance Java programs. Section 4 outlines
continuing and future work; Section 5 gives our
conclusions.

2. ADVANTAGES OF C# FOR JAVA
PROGRAMMERS
C# is an object-oriented language developed by
Microsoft to act as a worthy successor to C++ and
Visual Basic. Like its close cousin, Java, it runs within
a specialized environment, but a notable difference is
that C# code is not interpreted. It is compiled first to
an intermediate code (CLI) and then before execution,
it is JIT compiled to native code. Thus C# only ever
runs in native code, which is a plus for high
performance computing.

Much of C# is the same as Java. At the language level,
its object-oriented model is very similar in that it
defines classes and interfaces, does not have multiple
inheritance, and relies on garbage collection at runtime
(known as ‘managed code’).

C# has several new features which make it interesting
for Java programmers. Those which we have identified
(not an exhaustive list) are:

1. Better control of synchronized objects with the
volatile modifier.

2. Operator overloading as in C++ is allowed.

3. The switch statement can switch on strings (see
section 3.1 for an excellent example of this
feature).

4. The indexing operator [] is overloaded for all
collections so that one can move seamlessly
between arrays and more complex data structures
such as hash tables as the need arises.

5. Input-output and file input-output is simpler than
in Java, and also more powerful, with the
introduction of format statements.

6. Objects can be serialized in binary and in XML.
The XML format would typically be used across
the network or between programs.

7. there is a Dispose method for deterministic control
of releasing resources held by classes.

8. Structs (light weight objects) are available. They
are allocated on the stack and are not subject to
garbage collection.

9. Values are automatically converted to objects and
back as required.

10. The foreach statement gives increased power to
iteration over collections of objects (similar, but
much simpler than, the iterators in Java).

11. Properties are available for all data members of a
class, giving a much cleaner and neater syntax for
the definition of get and set.

12. Multidimensional arrays represent a contiguous
block of memory and are therefore susceptible to
the compiler loop optimizations expected for high
performance computing. These are distinct from
the normal jagged arrays of multiple objects
which C# (and Java) has as default.

13. Verbatim strings avoid the use of escape
characters, and allow multi-line strings, a feature
which was essential for the development of the
XML based GUI class described in section 3.1

14. Overflow can be detected or ignored in
expressions and type conversions.

15. Delegates provide callback functions, akin to
functors in C++.

On the debit side, C# does not have inner classes,
dynamic class loading, strictfp (for enforcing IEEE
754 floating point) and of course cross-platform
runnability. At present, C# is available only on
Windows at industrial strength, although a FreeBSD
Unix version exists for research purposes [13].

We have been programming small and large programs
in C# for six months and have found it reliable, fast
and easy to use. For a Java programmer, it isa
remarkably familiar language base. What is different is
its supporting technologies, and of course all of its
APIs (called anmespaces). In what follows, we look at
the some of the major technologies that enable Java
and C# to co-exist.

At this stage, there are several professional books on
C#, such as [16] and also several independent online
resources such as [3]. In addition, there are some
independent comparisons of C# and Java, the best
being those by [11] and [8]. To date there has not been
a similar comparison of supporting technologies, but
[14] aims to fill that gap.

3

3. SUPPORTING TECHNOLOGIES
FOR JAVA AND C#
There is an almost overwhelming range of supporting
technologies for Java, and an equal number for C#.
Some of them, such as http, XML and SOAP, are
independent and shared by both languages. Others are
specific to Java or to C# and do not have counterparts
in the other camp, such as JavaBeans on the one hand
and Web Forms on the other. It is clearly important to
know which technologies are shared and which are
not, and it is not always easy to make the distinction,
since Sun and Microsoft, being vendors, have a vested
interest in presenting technology in a propriety
manner. For example, Sun calls its XML messaging
capability JAXM and Microsoft’s distributed and
reusable components are called ActiveX controls.

A programmer trained in Java, say two or three years
ago, is faced with two challenges:

♦ sifting out the new technologies that are relevant,
and would enhance productivity

♦ learning how to integrate these into existing
software successfully.

We shall go through three high-profile technologies,
and show how they can be used to great effect to bring
C# into Java programs. These are XML, JNI and .NET
Web Services.

3.1 Incorporating XML into Java and C#

XML is a universal format for data that provides
structure to information so that it can be easily parsed
[4]. Scientific programmers often have complex data
sets to input or transfer. By using XML to describe the
structure of the data, integrity can be ensured across
programs, and between runs of a program. XML can
be enhanced by XML-schemas that can specify meta-
structure, and by XSL, which describes stylesheets,
used for the presentation of a class of XML
documents.

We illustrate the power and ease of use of XML by
describing a tool which considerably eases the burden
of writing visually appealing user-interfaces in both
C# and Java. The tool is called XGui [6] [7]. It was
originally written in C#, but can be called from Java,
as described in the next section. It has also been
recently successfully translated into Java.

C# has two antecedents – the Windows world where
people are used to building programs with point and
click forms, and Java, where the awt and Swing class
libraries make hand-written GUI code exceptionally
easy. Emulating Java’s ease of GUI creation in C#
without the support of Visual Studio .NET is quite a
challenge.

Approaches to creating C# GUIs

We have investigated four options for C# GUIs:

Option 1: Use Visual Studio as is. Creating a GUI
using Visual Studio is easy to do, especially for those
who have been used to this paradigm. Components (or
controls) are clicked onto the screen in the correct
position, and then properties are filled in to connect the
actions associated with them to handler code.
However, the code generated by the environment to
implement the form is intimidatingly long and verbose.
Visual Studio is also a large system, not suitable for
running on all computers. Moreover, the open source
version of C# that runs on Free BSD Unix obviously
does not have this environmental support [13].

Option 2: Use Visual Studio but create a strict calling
interface to user code. The idea here would be to have
the programmer write the handlers, rather than use the
property sections to do so. The problem is that it is not
possible to separate out dumped code from
programmer written code in any viable form without
editing the dumped code, which spoils the purpose.
The dumped code is lengthy and overwhelming. If it is
hidden using Visual Studio’s region feature then key
features are also hidden, such as the names of the
components, text that is displayed and so on. Such
code is all mixed up with non-key information such as
the pixel position of the component, the text alignment
and the tab index.

Option 3: Create the form without Visual Studio.
Avoiding the environment helps very little. We
programmed a simple "ButtonTest" example through
Visual Studio first and it came to some two pages of
dumped code and 10 lines of an actionPerformed
event. The length of the dumped code is due to
Windows Forms controls only having one, no-
parameter, constructor, and there being no flow
managers. So even a simple instantiation of Button
has to be followed by several (usually six) assignment
statements. For example:

this.waitButton.BackColor =
 System.Drawing.SystemColors.Control;
this.waitButton.Location =
 new System.Drawing.Point(7, 128);
this.waitButton.Name = "waitButton";
this.waitButton.TabIndex = 2;
this.waitButton.Text = "Wait";
this.waitButton.Click +=
 new System.EventHandler(
 this.actionPerformed);

We then tried to massage the code down into its bare
bones as it would be written by a human, but we could
not achieve the desired effect. Windows Forms are
clearly not meant to be programmed by hand.

Option 4: Design a customised class. The final
possibility is to hide the complexity in a special multi-

4

purpose class which uses ordinary method calls to
operate on a reasonably complex GUI. The setting up
of the GUI could be done in one of two ways:

♦ Have a small set of methods to call to create
simple buttons and textboxes

♦ Use an XML description of the form to drive
the setup.

The first alternative was used with the Display class
discussed in [1]. We support the second alternative
because it is modern and far more extensible. It is
analogous to the embedding of SQL in JDBC calls.
All of the above programming shown in Option 2
would be replaced by the XML specification

<button text=’Wait’/>

which would be used by the constructor of the GUI
class to create a button control.

The idea of using XML notation to specify the layout
of a GUI is not new; the User Interface Markup
Language (UIML) is an XML tagging scheme which
was invented for exactly that purpose [2]. However,
UIML is a complicated tagging scheme, while our
XML tags are greatly simplified by making them have
the same names and attributes as the Winforms
controls that they generate. The purpose of UIML is to
be platform independent, while XGui is very much
oriented towards Windows.

A simple GUI class for C#

Each instance of the XGui class creates a single
Windows form (called a Frame in Java terminology)
on the screen. Each form contains some simple
controls (components in Java), such as labels, buttons
and text boxes that the calling program can use for
GUI input and output.

The controls displayed on the form and their layout are
specified by an XML string passed to the constructor.
The user can subsequently set and get information that
appears within the controls, e.g., the user can call the
GetText method to obtain the text available inside a
textbox control. Figure 1 shows an XGui Windows
form for a simple scientific program to calculate
capacitance charge using Simpson’s Rule.

Figure 2 shows the XML specification needed to
define that form. The <horizontal> and <vertical>
XML tags simply group controls in horizontal or
vertical lists. Otherwise, we have singleton tags for
each control that is supported.

The XML notation is infinitely extensible. We can add
attributes to specify the size of a control, its colour, its
alignment relative to other controls, its position in the
form, and so on.

Figure 1 A user interface created by XGui

XGui xgui = new XGui(@"<gui name
 ='Capacitance Charge'>
 <vertical>
 <horizontal>
 <vertical>
 <label text =
 'Capacitance in farads, C'
 width=150/>
 <label text = 'Start
 time in seconds' width=150/>
 <label text =

'End time in seconds'
width=150/>

 <label text =
'Sub-intervals per second'
width=150/>

 </vertical>
 <vertical>
 <textbox name='capacitor'
 text='0.05' width=80/>
 <textbox name='starttime'
 text='0' width=80/>
 <textbox name='endtime'
 text='10' width=80/>
 <textbox name='intervals'
 text='20' width=80/>
 </vertical>
 <vertical>
 <listbox name = 'list' width=200/>
 </vertical>
 </horizontal>
 <button name='Ready'/>
 <button name='Exit'/>
 </vertical>
</gui>");

Figure 2. XML specification for a GUI

Where there is no confusion, tag names are the same
as the names of the corresponding components in the
C# Windows Forms class library and the attribute
names match the names of members of those classes.
Case is ignored for the tag names and attribute names.

5

Everything has a sensible default. Layout and sizing
are automatic unless overridden by explicit attributes.

The XGui object created by the program maintains the
controls specified in the XML. To interact with them,
we use a series of methods, such as:

string GetButton() – returns the id of the button
that was pushed; by default, the id is the same
as the text the user sees displayed on the button.

string GetText(string id) – returns the text
that is currently contained in the textbox whose
id is specified.

void PutText(string id, string text) –
writes the string text into the textbox or the
scrollable text window whose id is specified.

There are several others which control the colour of
the individual controls. Figure 3 shows some sample
C# code that interacts with the controls in the form.
There is just one constructor:

XGui(string xmlSpec) – uses the XML string to
construct the layout.

Controls implemented in the XGui class include:
Label, Button, TextBox, and ListBox, OpenFileDialog
and SaveFileDialog.

while(xgui != null) {
 string b = xgui.GetButton();
 switch (b) {
 case "Ready":
 C = double.Parse(xgui.
 GetText(capacitor"));
 // … and other values
 if (intervals%2==1) intervals++;
 xgui.PutText("list",
 "Integrating from "
 +start+" to "+end+" seconds");
 // … and other values
 // Perform integration
 break;
 case "Exit":
 xgui.CloseGUI();
 xgui = null;
 break;
 }
 }

Figure 3 The C# Handler for the XGui object

Assessment

The XML notation is very powerful and extensible,
and is revolutionising the way we write programs. For
example, supposing we wished to add a button to
cause the program to draw a graph of the process. All
we need to add is

<button name = 'Draw Graph'/>

wherever we would like it to appear in the GUI, and
then add the appropriate case to the switch statement

(C#) or equivalent if-else statement (Java). While
XML has been used in many contexts, we do not know
of any attempts to integrate it as thoroughly into
coding as we have done. It should be noted that the
implementation of XGui (described in [7]) is non-
trivial. Its current implementation uses regular
expressions to normalize the XML notation and
reflection to make access to controls truly dynamic.

3.2 Using JNI to integrate Java and C#

Instead of retooling a system in C# and retraining
programmers to do so, let us just ensure that we can
call C# from Java. Then, as and when needed, new
parts of a system can be written in the new language.
From Java's point of view, C# should be Native Code
in the same way as C or C++ is. If so, then it can be
called from Java using JNI, the Java Native Interface,
which comes standard with the JDK. JNI supports the
portability of code across all platforms and allows
code written in C/C++/Assembler to run alongside the
JVM (Java Virtual Machine). The interface works at
the level of method calls, so that native methods can
create, update and inspect Java objects and call their
methods.

Summary of JNI for C

The steps to use a C function via JNI are described in
[15], and involve the following steps. The Java side
includes a method stub along the lines of

public native void displayHelloWorld();

and then uses the javah tool to generate a C header file,
which includes the declaration:

JNIEXPORT void JNICALL
 Java_HelloWorld_displayHelloWorld(
 JNIEnv *, jobject);

The method we started out with,
displayHelloWorld, is now prefixed with Java
and the name of the class, making it
Java_HelloWorld_displayHelloWorld. We
implement this method in C, say, as follows:

#include <jni.h>
#include "HelloWorld.h"
#include <stdio.h>
JNIEXPORT void JNICALL
 Java_HelloWorld_displayHelloWorld(
 JNIEnv*env,jobject obj) {
 printf("Hello world!\n");
 return;
}

6

Then the Java to activate everything is:
class HelloWorld {
 public native void displayHelloWorld();
 static {
 System.loadLibrary ("HelloWorld");
 }
 public static void main(String[]args) {
 new HelloWorld().displayHelloWorld();
 }
}

When the HelloWorld class is instantiated, it starts
up JNI and the C method, by loading the library which
includes the HellowWorld.cpp file. If all goes well,
Hello world!, is printed out.

JNI for C#

Now suppose we want to implement the same
procedure, but this time for C#, i.e. using the C#
method:

using System;
public class CSharpHelloWorld {
 public CSharpHelloWorld () {}
 public void displayHelloWorld() {
 Console.WriteLine(
 "Hello, World From C#!");
 }
}

The difficulty is that JNI at present only works for C
and C++, not yet for C#. To call a C# method, we will
need to wrap it in C++. But C# is managed (i.e.
garbage collected) and C++ is not. Fortunately, we can
use C++ with what are called Managed Extensions,
creating a managed wrapper, which interacts with an
unmanaged wrapper, which interacts with Java. This is
summarised in Figure 4. The managed wrapper
includes a class called HellowWorldC with a function
called “method” as follows:

public:
 HelloWorldC() {
 t = HelloWorld();
}
void method() {
 t -> displayHelloWorld();
}

The original C++ wrapper is then altered to interface
with the Java method as:

#include "HelloWorld.h"
#include "HelloWorld.cpp"
#include <string.h>

JNIEXPORT void JNICALL
Java_HelloWorld_displayHelloWorld
 (JNIEnv *jn, jobject) {
 TestLibC* t = new
 TestLibC();
 t->method();
 }

Java

JNI

C++ unmanaged
wrapper

C++ managed
wrapper

C#

Figure 4. Using JNI for Java to C# communication

Assessment

The question is whether this technique can be used
generally, and with heavy-duty C#. The answer is yes,
with a bit more work. The problem is that pointers in
managed C++ may change their values during a
garbage collection. One could prohibit the type-casting
of managed pointers to unmanaged pointers. A more
satisfactory solution is to create a static reference to a
managed pointer. Using this technique, we
successfully called the large C# class, XGui, described
above from Java. For details, see [17].

3.3 .NET WEB SERVICES AND JAVA
The .NET framework is the implementation of the
standardized Common Language Infrastructure (CLI).
.NET consists of many languages that are built on the
implementation of the CLI, called the Common
Language Runtime (CLR). Application execution is
not interpreted, as in Java, but all supported languages
are compiled to an intermediate representation, which
is then compiled to the operation system's native code.
The framework itself is the programming model of the
.NET platform and is used for the construction and
deployment of both local and distributed services and
applications. see Figure 5.

Unlike Java, .NET relies on server side processing.
There is no concept of an applet, where the runtime
machine is held in the browser. Client-side applets are
relatively simple, with access to data kept on the server
either by sockets, JDBC or JSP and servlets. Although
intrinsically more complex than the client-side
program model, the .NET environment in reality
simplifies the server side processing structure. .

7

CLR

Managed
components

Windows (or other operating system)

Legacy
software

(unmanaged
code

Managed
executable

Figure 5. The .NET framework

However, there is an interesting alternative to the
standard .NET approach. We can create and maintain a
Java applet on the client side that is able to interact
with the server as a .NET web service. A web service
is a software component that exposes useful
functionality to web users through a standard web
protocol such as SOAP (Simple Object Access
Protocol). This link enables a client to do a remote
procedure call to all the functions of the web service
that are exposed to the web via a SOAP message. The
response from the web service will also be in the form
of a SOAP message.

Setting up a Web Service with Microsoft Visual Studio
.NET is easy. Then each method can be exposed to the
web by adding a [WebMethod] tag, e.g.

[WebMethod]
public String testString() {
 return "Hello World!";
}

For the client to access this service it will have to
generate a valid SOAP request and send it to the web
service. SOAP requests are generated by a Visual
Studio wizard and are themselves phrased in XML,
some of which is:

<soap:Envelope xmlns:xsi
="http://www.w3.org/2001/
XMLSchema-instance"
xmlns:xsd="http://www.w3.org/

2001/XMLSchema"
xmlns:soap="http://schemas.
xmlsoap.org/soap/envelope/">

 <soap:Body>
<testString xmlns=
"http://tempuri.org/" />

 </soap:Body>
</soap:Envelope>

Although we are once again using XML, as in 3.1,
note that this XML is machine generated. The web
service will in turn generate a response to the above
request that will also be in the form of a SOAP
message.

Accessing the web service from Java

To access a web service written in C#, we construct a
SOAP message and send it to the web service. The
Java XML package JAX is used for generating SOAP
messages. The appropriate JAX classes for a SOAP
message are:

SOAPMessage
 SOAPPart
 SOAPEnvelope

SOAPHeader
SOAPBody

 AttachmentPart

The AttachmentPart can contain any data that is not in
XML format. After creating objects for each part of
the message, parts of the body are filled in with the
XML string that is relevant to our application, for
instance:

Name bodyName =
 SE.createName("testString",
 "L","http://tempuri.org/");
SOAPBodyElement SBE =
 SB.addBodyElement(bodyName);

This will generate the following XML code and add it
to the SOAPBody:

<L:testString xmlns:L=
 ”http://tempuri.org”>

</L:testString>

To add more XML tags to the document create
SOAPElements and add them to the
SOAPBodyElement. To generate a SOAP message we
must get a connection to the web service and send the
message. This is also done through further JAX
classes:

SOAPConnectionFactory SCF =
 SOAPConnectionFactory.
 newInstance();
SOAPConnection con =
 SCF.createConnection();

URLEndpoint endpoint = new
 URLEndpoint("http://localhost/
 WebService1/Service1.asmx/
 testString?");
SOAPMessage response =
 con.call(message,endpoint);

When executing con.call(message,endpoint) the
request will be send to the URLEndpoint and it will
wait for the response from the web service and store it
in a new SOAPMessage object. To use the response
that is received from the web service is also very easy
because we have a new SOAPMessage object, and we
can access the SOAPBody as we did before.

8

Assessment

SOAP messaging might seem like a complex and
esoteric technology, but in fact, it is quite
straightforward and follows set patterns. A Java
programmer should have no problem in setting up the
first connection, and thereafter additional messages
just require resetting the SOAPBody.

With an increasing number of web services coming on
line, the ability to access them from existing applets
will considerably enhance their value and prolonged
their lifetime.

4. FUTURE WORK
Work continues in two areas:

♦ implementing more examples of the use of the
technologies mentioned here, and assessing their
performance;

♦ investigating other technologies for interaction,
such as ODBC.

Within the high performance community, it is clearly
important to assess the impact of layered approaches to
software (as in the JNI solution). With SOAP
messaging from applets, an important consideration
would be the speed of graphics dispatch. The XGui
class is now being ported to Rotor, so that it can be run
on Free BSD Unix. Here the interactions between Java
and C# can be tested all over again.

5. CONCLUSIONS
The relative merits of C# and Java will doubtlessly
fuel arguments for many years. As a language, C# has
corrected some deficiencies of Java and added a few
new features. More importantly, C# is integrated into
the .NET environment which provides access to web
services and operating system services for the
Windows platform. C# will join C++ and Visual Basic
as a major programming language for developing
Windows applications and web applications that run
on Windows servers.

Java is also intended for general application
development and web services development, on both
the client side and server side. Java has the advantage
of being platform independent, which C# may never
become. However, there are certainly situations where
C# will be preferable to Java. If applications are being
developed for Windows, code written in C# will
normally execute more efficiently, will have direct
access to operating system services, and will more
easily inter-operate with programs written in other
languages. The ‘unmanaged code’ feature of C# allows
exactly that. This paper provides an example of C#

calling C++ which, in turn, calls Java. The approach is
entirely object-oriented, with class instances in C#
communicating with class instances in Java via
method calls.

While it is not easy to combine C# and Java in the
same application program, it is possible. The example
application in Java invokes an instance of a C# class,
XGui, for access to a GUI on Windows. There are
potential difficulties working with pointers to objects,
but these can easily be avoided.

The C# language provides direct access to operating
system services and web system services in the
Windows environment. This paper shows how Java
code can be linked with C# code to obtain similar
access, albeit yielding a program which is no longer
platform independent.

ACKNOWLEDGEMENTS
This work was supported by NRF grant 2969. We are
frateful for the technical input and advice of Johnny
Lo, Cobus Smit, John Muller, Kathrin Berg, Theo
Danzfuss and Theo Crous.

REFERENCES
[1] J M Bishop and N T Bishop, Object-orientation in

Java for scientific programmers, Proc. 22nd
International SIGCSE Technical Symposium on
Computer Science, Austin, pp 205-216, March
2000.

[2] R. Cover, User Interface Markup Language,
http://www.oasis-open.org/cover/uiml.html, last
visited June 2002.

[3] C# Links and Resources,
http://www.webreference .com
/programming/csharp/, several articles on C#, last
visited June 2002.

[4] Extensible Markup Language (XML),
http://www.w3c.org/XML/, last visited June 2002.

[5] V Getov, G von Laszewski, M. Philippsen and I.
Foster, Multiparadigm communi-cations in Java
for grid computing, Communications of ACM 44
(1) 118-125, October 2001.

[6] R N Horspool and J M Bishop, XGui,
http://www.cs.up.ac.za/~jbishop/rotor, Last visited
June 2002.

[7] R N Horspool and J M Bishop, XGui: the design
and implementation of an XML GUI generator for
C# and Java, in preparation, June 2002.

[8] M Johnson, C#: a language alternative or just J--?,
JavaWorld, November 2000, at

9

http://www.javaworld.com/javaworld/jw-11-
2000/jw-1122-csharp1p2.html, last visited May
2002

[9] M. Lobosco, C Amorim and O Loques, Java for
high performance network based computing: a
survey, Concurrency and Computation - Practice
and Experience, 14 (1) 1-32, January 2002.

[10] J Moreira, S Midkiff, M Gupta, P Artigas, P Wu
and G Almasi, The Ninja Project,
Communications of ACM 44 (1) 102-109,
October 2001.

[11] D. Obasanjo, A comparison of Microsoft’s C#
programming language to Sun Microsystem’s
Java programming language,
http://www.25hoursaday.com/CsharpVsJava.html,
72 pages, last visited June 2002.

[12] C M Pancake and C Lengauer, High-performance
Java, Communications of ACM 44 (1) 99-101,
October 2001

[13] Rotor, http://research.microsoft.com/programs/
europe/rotor/default.asp, last visited June 2002

[14] C Smit and J Muller, J2EE platforms and
Microsoft .NET: a techological comparison,
Technical Report, Department of Computer
Science, Univeristy of Pretoria, May 2002.

[15] B. Stearns, Trail: Java Native Interface,
http://java.sun.com/docs/books/tutorial/native1.1/i
ndex.html, last visited June 2002.

[16] A Troelsen, C# and the .NET platform, APress,
2001.

[17] B. Worrall and J. Lo, Integrating C# and Java,
http://www.cs.up.ac.za/polelo/ interests.html, last
visited June 2002.

